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AN EFFECTIVE ALGORITHM TO PRIVATE-KEY IN THE
RSA CRYPTOSYSTEM

A. Grytczuk

In this paper we give an effective algorithm for determinaion
in explicit form of the inverse element In private-key in the RSA
cryptosystem under the condition when we known the value of the
Euler’s totient function .Moreover, we present some estimates for the
function ¢ (n) for the case when the natural number n is the product
of two primes p,q, so n = pg and this result can be applied in RSA
cryptosystem. The main theoretical idea is contained in our papers
[1].
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1. Description of the classical algorithm.

We remember that Rivest, Shamir and Adleman in the paper [5] give a
very important cryptosystem called as RSA cryptosystem. In the first steep
in this cryptosystem we select two different primes p, g.Let n = p-¢, then we
have ¢ (n) = (p—1)- (¢ — 1), where ¢ is the well-known Euler’s function.
Next, we select a number k such that 1 < k < ¢ (n).and ged (k, ¢ (n)) =1,
where ged (2, y) denotes the grand common divisor of the integer numbers
z,y. Then the pair (k,n}) is called as public-key of the RSA cryptosystem.
The inverse element with respect to k in the multiplicative group 2, where
m = ¢ (n), we denote by [. Then the pair {/,n) is called as private-key of
the RSA. The determination of the element [ in private-key cryptosystem
by known classical technique has the following procedure. In the first steep
we use classical Euler’s theorem:

(1.1) If (k,m) = 1 then k*(™ =1 ( mod m).
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Relation ¢ = b ( mod m) is equivalent to divisibility relation m | a — b,s0
denote that there is integer ¢ such that a — b = mq,hence a« = mg + b. On
the other hand we known that the element [ is inverse to k& in the group Z;,
hence

(1.2) I-k=1(mod m).

By (1.1), (1.2) and well-known properties of the congruence relation
( mod m) it follows that

(1.3) [ = k*"~1(mod m).

From (1.3) we obtain that the element [ is the residue of the divisilibity
the number ¥ =1 by m.

2. Algorithm based on continued simple finite fractions.

Let m > 2 be fixed integer and let Z be the ring of all integers. Moreover,
let

(21) zZx ={x e Z;1 <z <m,(z,m) =1},

and let z,y € Z% and 7 o” be the following operation in the set (2.1):

(22) woy=r=(r-y),,-

Element r is the residue which we obtain dividing the product z - y by

m.

In our papers [1] have been proved that the set Z* defined by (2.1)
with the operation (2.2) is a commutative group with effective and explicit
form of the inverse elements.

Now, we give short method for determination such inverse element.

Let k € Z¥ and let = be an inverse element to k. Then by (2.2) it follows
that there is an integer y such that k-2 =m -y + 1, hence,

(23) m-y—k-x=-L
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Since m, k are given integers then we can expanded the rational number

7 on the simple finite continued fraction:

(24) Z=[giq, 9, 4]

Let R; = % be j —th convergent of the fraction (2.4), then m = P, k =
Qs, and

(25) Py~ Q=P Q= (=15 2<j <.

For j=s by (2.5) it follows that

(26) Py- Qo1 —Qy- Py = (—1)"".

From (2.6) and (2.3} immediately follows that if s = 2¢ then
(2.7) v =P,y = Py,

If s =2t + 1 then we obtain

(2.8) x=m—P,_1 =m — Py.

By (2.7) and (2.8) it follows that the inverse element x is determined in
explicit form.H

3. Application to RSA cryptosystem.

For application of this algorithm to determination of the element [
in private-key of RSA cryptosystem it sulflices to consider the case when
m = ¢ (n). Consider the following example:

Example 1. Let p=13,¢ = 31. Then we have n = p-qg = 13-31 = 403
and consequently ¢ (n) =@ (p-¢) =(@p—-1)-(¢ —1) =12 30 = 360. Now,
we select in public-key the number & = 157, which satisfied the condition
1 < 157 < 360 and ged (157,360) = 1. Then by application to numbers 360
and 157 of the Euclide’s algorithm we obtain:

(3.1) 360 =157-2+46; ¢ =2
157=46-34+19; ¢=3
46=19-248;, ¢ =2
19=8-243; qs =2
8§=3-2+2; qs =2
3=2-1+1; ;=1
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2=1-2; g6 = 2.

From (3.1) we have the following form of simple finite continued fraction

for rational number 32 :

(3.2)  %0=12;3,2,2,2,1,2].

Using the following formulas for the reducts I%; = g; 0 <7 <s, from
J
the theory of simple finite continued fractions:

(33) Ph=qo,Qo=1:Pi=q-q+1,Q1=q,

(34) Pj =4q;- Pj—l + Pj_Q, Qj =4q;- Qj—l + Qj_g, for all j, such that
2<)<s;

by (3.1),(3.3) and (3.4) we obtain

(35) Py=2P,=2-341=7,P,=2-T42=16, P, =2-16+7=
39, Py = 2-:39+16 = 94, P; = 194439 = 133, Py = 2-133+94 = 360 = ¢ (n)

(36) Qo=1,Q1=3Q:=2-3+1=7,Q:=2-T+3=17,Q4 =
2. 17+7=41,Qs=1-41+17=58,Qs =2 - 58 + 41 = 157 = k.

Since s = 6 = 2 -3, is even , then by (2.7) and (3.5) it follows that
l:P5_1:P5:133..

Example 2. Let p = 13,¢ = 31 be the same prime numbers as in
the Example 1, but we select in public-key the number & = 257. Then
applying similar procedure as in the Example 1 we obtain

(3.7) 3 =1;2,2,51], go=1,q1 =2,¢» = 2,3 = 51.

By (3.7), (3.3) and (3.4) it follows that
(3.8) Py=1,P =3P =17, P; =360
(3.9) Qo=1,1=2,Q2=5,Q3 =257.

Since s =3 =2-1+1, is odd, then from (3.8) and (2.8) we have that
l=m—P,_1=¢(n)—P,=360-7=3531

Example 3. Now we can compare the classical and our algorithm.
In Example 1 we have m = ¢(n) = 360hence ¢ (m) = ¢ (360) =
©(2°-32.5)=¢(2*) - ¢ (3%) - p(5) =4-6-4 = 96. By (1.3) we have
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(3.10) [ =157% ( mod 360),

so denote that for determination in explicit form of the element [ in
private - key of RSA cryptosystem we must calculate of the value power
157% and next dividing by 360 we obtain the number [ = 133.

In the Example 2 we have
(3.11) [ =257 ( mod 360).

Therefore dividing the number 257%° by 360 we must obtain the number
[ = 353 which has been determined in Example 2.

Now, we give general procedure based on algoritm described in part 2.
We name of this algorithm in short form as:algorithm of CSFF

4. Determination of the element [ in private-key of the RSA
cryptosystem based on algorithm of CSFF

Let n=p-gand ¢ (n) =(p—1)- (¢ —1). Moreover, let 1 < k < ¢ (n),

ged (k, ¢ (n)) = 1. Then public-key is given by the pair (k, n) . We determine
the inverse element in private-key by the following process:

1°, The rational number @ we expande on simple finite continued
fraction by application well-known Euclide’s algorithm,

(41) @ = [qo;q17QZ7°"7QS]-
2°. By applications of the formulas (3.3) and (3.4) we determinate P;_;.

3%, If s = 2t then the inverse element [ is given by the formula [ = Py_;.
If s=2t+1thenl=¢(n)— Py.

5. Remark 1. The algorithm based on simple finite continued fraction
described in part 4 give explicit form of the inverse element [ in private-key
{I,n) of the RSA cryptosystem but under the condition when we known
the value of the Euler function ¢ (n). Therefore in next part of this paper
we give an estimate for the function ¢ (n), which can be used in practice
cryptography.
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6. Estimate for the function ¢ (n).

Since n = p - ¢ then we have

6.1) p(n)=(p-1)-(¢-)=p-g+l-(p+g=n+l-(p+q).
Now,we remark that if z is a real positive number, then we have
(62) @ = o]+ {a},

where [z] denote the integer part of x and 0 < {z} < 1.

It is well-known classical incquality:

(6.3) BL> /pq.

From (6.2), (6.3) and in virtue of n = p - ¢ we obtain

(6.4) p+q>2yn>2[Vn].

By (6.1) and (6.4) it follows that

(6.5) ¢n)<n+1-2[/n].

For lower bound estimation we note that if n = p- ¢ then we have: 1).
p>+/nand ¢ </n or 2).q>+/nand p < /n. By (6.1) it follows that

(6.6) ¢(n)=n- (1—2%) . (1—%) =n- {l— (%+$) +p%q].
Suppose that 1). holds and let ¢ > 11. Then we have

(6.7) S+:<om+ir

From (6.6) and (6.7) we get

68) p)>n-[1-L-F+i]=Bn-Zr1=Lasi-yn
For = \/n from (6.2) follows that

(:6.9) vn=[Vn]+{Vn} <[Vn]+1.
By (6.8) and (6.9) it follows that
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(6.10) ¢ (n) >3 -n—[Vn].

From (6.5) and (6.10) we obtain that for every odd primes p, ¢ such that
one of p or q is greater than 11 we have the following estimate for function
¢(n), whenn=p-q:

(*)  mon-lval<em) <n+1-2-[Vn].

Now, we remark that we can obtained better lower bound than (6.1)
using the following consideration. Suppose that we have the case 2). Then
we have

(6.11) ¢ > v/n = [Vn] +{vn},0 < {vn} < 1.

By (6.1) it follows that

(6.12) ¢ > [Vn].

From (6.12) and the fundamental theorem of arithmetic we have
(6.13) qg=1[v/n]-s+r, where 0 <r <[y/n],s > 1.

Since from condition (2) we have that p < /n = [v/n]+{v/n} < [/n]+1,
then by (6.13) we get

(6.14) pH+g<[Vn]+1+[Vn]-s+[Vn|=(s+2)[v/n]+1.

By (6.14) and (6.1) it follows that

(6.15) ¢ (n) =n+l—(p+4q) > nt+l—(s+2)[Vn]-1=n—(s +2) [/n].
From (6.15) and (6.5) for s =1 we obtain

(**) n-=3[Vn|<e¢(n)<n+1-2[/n].

We note that the lover bound estimation for the function ¢ given in

(**) is better than (*) for all n > 222

Example 4. Let p = 13,9 = 31 as in Example 1. Then we have
n = 403, ¢ (n) = 360. From (*) we obtain

(i) 2£.403— [V403] < ¢ (n) <403+1—2-[/403],
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hence

(i) 346 < ¢ (n) < 364.

Remark 2. From the classical Rosser-Schonenfeld’s inequality [6],
(Cf.|4],p.169 and [2],p.70) it follows that for all n > 3° we have

(R-S) ¢ (n) >

N [ S
1.3e7 loglogn*

It is easy to see that the lower bound given by (*) is better for application
than (R-S).Upper bound (*) for all composite n in the form: ¢ (n) < n +
1 —2-+/n have been given in the paper [3].
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